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Abstract
We propose a quantum oscillation experiment by which the rotation of an underdoped
YBa2Cu3O6+x sample about two different axes with respect to the orientation of the magnetic
field can be used to infer the shape of the in-plane cross-section of corrugated Fermi surface
cylinder(s). Deep corrugations in the Fermi surface are expected to give rise to nodes in the
quantum oscillation amplitude that depend on the magnitude and orientation of the magnetic
induction B. Because the symmetries of electron and hole cylinders within the Brillouin zone
are expected to be very different, the topology can provide essential clues as to the broken
symmetry responsible for the observed oscillations. The criterion for the applicability of this
method to the cuprate superconductors (as well as other layered metals) is that the difference in
quantum oscillation frequency 2�F between the maximum (belly) and minimum (neck)
extremal cross-sections of the corrugated Fermi surface exceeds |B|.
(Some figures in this article are in colour only in the electronic version)

The recent discovery of magnetic quantum oscillations in
high temperature superconductors provides an entirely new
perspective on their electronic structure [1–5]. These
experiments provide evidence for a Fermi surface and possible
evidence for a broken symmetry groundstate in underdoped
samples, yet the precise form of the symmetry remains the
subject of debate. A key point of discussion is the carrier sign
of the pocket responsible for the largest amplitude quantum
oscillations in YBa2Cu3O6+x and YBa2Cu4O8 [1, 6]. Quantum
oscillation experiments cannot directly infer the sign of the
carriers, leaving open many possibilities for the interpretation
of the negative Hall coefficient and topology of the Fermi
surface [7–13]. The choice between electron and hole pockets
cannot be taken lightly. If the carriers are truly electron-
like then this places limitations on the types of theoretical
model that can be applied to the underdoped metallic state of
high Tc superconductors. Given the possible implications for
the competing order parameters in YBa2Cu3O6+x , a thorough

experimental investigation of the Fermi surface topology is of
paramount importance.

In this paper we show that crucial clues as to the
nature of the broken symmetry phase that competes with
superconductivity may be found by performing quantum
oscillation experiments in which the crystalline c axis of the
sample is tilted away from axis of the magnetic induction B in
different directions. The recently proposed deeply corrugated
form of the Fermi surface cylinder(s) [14, 15] implies the
existence of beats in the quantum oscillation amplitude as a
function of the magnitude and orientation of B. By tracking
the position of nodes in the quantum oscillation amplitude,
the shape of the in-plane cross-section of the cylinders
can be mapped out in a similar fashion to angle-dependent
magnetoresistance oscillations (AMRO) [16]. A distinction
between electron and hole pockets can be made because they
are predicted to have different symmetry properties within the
Brillouin zone (as depicted for the simple case of Q = (π, π)
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Figure 1. (a) Schematic Fermi surface for the simple case of
Q = (π,π) density wave ordering, leading to reconstructed electron
(pink) and highly elliptical hole (cyan) pockets. The electron pockets
are expected to vanish in strong-coupling models. (b) Schematic
warped Fermi surface with an elliptical cross-section with its major
axis at an arbitrary orientation ζ within the kx , ky plane. The
extremal cross-sections orthogonal to kz and c are depicted in green.
The red curve shows an example orbit when the magnetic induction
B is rotated by a ‘zenithal’ angle θ away from the kz axis. The half
caliper width of the in-plane cross-section k‖ depends on the
‘azimuthal’ component φ of the magnetic field orientation and on ζ .

ordering in figure 1(a)), the details of which may further
depend on the precise form of the broken symmetry.

Independent of the broken symmetry responsible for the
creation of a given corrugated Fermi surface cylinder, the kz-
dependence of the cross-sectional area Ak can be expanded as a
series of harmonics. A schematic of a corrugated Fermi surface
cylinder is shown in figure 1(b). If the in-plane crystal lattice
vectors a and b are orthogonal to the interlayer vector c, Ak

can be considered as the sum of even harmonics

Ak =
∑

n

An cos(nkzc) (1)

where c = |c|. Here, A0 is the mean cross-sectional area of
the Fermi surface, An�1 ≈ 4πm∗tc,n/h̄2 represent harmonics
of the corrugation and m∗ is the in-plane effective mass. In
the presence of a magnetic induction B, the k-space area Aθ,φ

of a given semiclassical orbit (depicted in red in figure 1(b))
depends on the ‘zenithal’ θ and ‘azimuthal’ φ orientation
of B with respect to the corrugated cylinder (as depicted in
figure 1(b)). The orbit area in such a situation was found by
Yamaji [17] to have the form

Aθ,φ cos θ =
∑

n

An J0(nk‖c tan θ) cos(nkz,0c). (2)

Its further dependence on the half caliper width k‖ of the
corrugated cylinder within the kx, ky plane was considered
in subsequent works [16]. Here J0(x) is the zeroth order
Bessel function, while kz,0 is the kz coordinate of the geometric
center of the orbit. If the in-plane cross-section is elliptical in
form, as if often approximately the case for small pockets of
carriers [16], then

k‖ = kF

√

η cos2(φ − ζ ) + 1

η
sin2(φ − ζ ), (3)

where kF = √
A0/π is the effective Fermi radius, η is the

ellipticity of the pocket (or the ratio between major and minor
axes) and ζ is the orientation of its major axis with respect
to kx within the kx , ky plane. For η = 1, this reduces to a
perfect circle where k‖ = kF, as was originally considered by
Yamaji [17]. The kz,0-dependence of the quantum oscillation
frequency is obtained applying Onsager’s relation

Fθ,φ =
(

h̄

2πe

)
Aθ,φ (4)

to equation (2). Finally, the form of the magnetic quantum
oscillations is obtained by integrating over kz,0. On neglecting
oscillations of the chemical potential (assuming that the
corrugation is large), the oscillatory magnetization is given
by [18]

Mz = − 1

π

∫ π/c

−π/c

∑

ζ,p,n

Mp sin

(
2πp

(
Fθ,φ

B
− 1

2

))
dkz,0 (5)

where

Mp =
(

h̄eN

pm∗

)
X p

sinh X p
exp

(
− p�

B

)
cos

(
πpm∗g

me cos θ

)
(6)

are the conventional amplitude-modifying prefactors and
X p = 2π2 pm∗kBT/h̄eB [18]. Here, p is the quantum
oscillation harmonic index. The term containing the hyperbolic
sine is the thermal damping factor, the exponential factor
accounts for quasiparticle scattering, while the cosine term
accounts for Zeeman splitting (or ‘spin splitting’) [18].

To understand the basic form of the B-dependent quantum
oscillation amplitude, it is instructive to first consider the
simpler situation in which the second harmonic of the
corrugation An�2 is neglected (along with higher harmonics).
In this case, the integral given by equation (5) has the simple
solution

Mz ≈ − 1

π

∑

ζ,p

Mp J0

(
2πp�Fθ,φ

B

)
sin

(
2πp

(
F0

B
− 1

2

))
,

(7)

where �Fθ,φ = �F J0(k‖c tan θ)/ cos θ is the difference
in frequency between maxima (‘belly’) and minima (‘neck’)
frequencies of the corrugated cylinder (with �F being that at
θ = 0). In AMRO experiments, one is typically concerned
with the ‘magic’ angles at which �Fθ,φ vanishes [16, 17]—
where the electronic structure mimics that of an ideal two-
dimensional metal. However, nodes in the quantum oscillation
amplitude, which occur for a finite value of �Fθ,φ , can
be determined with greater accuracy in quantum oscillation
experiments. Since �Fθ,φ > B/8π in the limit where we
consider nodes, equation (7) can be accurately approximated
by the superposition

Mz ≈ − 1

π2

∑

ζ,p

Mp

√
B

p�Fθ,φ

× sin

(
2πp

(
F0 ∓ �Fθ,φ

B
− 1

2

)
± π

4

)
(8)
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Figure 2. A plot of cot θm versus k‖/kF according to equation (9) for
m = 0 and 1, using c = 11.68 Å and �F/B = 1 (approximately
applicable to YBa2Cu3O6.54 at B = 40 T). For simplicity, we
consider only the nodes occurring when k‖c tan θm < 3π

4 .

of neck Fneck = F0 − �Fθ,φ and belly Fbelly = F0 + �Fθ,φ

quantum oscillations, giving rise to a distinctive beat pattern.
Nodes occur whenever the Fneck and Fbelly oscillations are π

out of phase, which occurs at a different set of ‘magic’ angles
θm given by

J0(k‖c tan θm) = (4m + 3)B

8�F
cos θm, (9)

where m is an integer. The monotonic dependence of the mth
node θm on k‖/kF in figure 2 (in which m = 1 and 0 are plotted)
implies that its φ-dependent angular position can be used to
map the shape of the cylinder cross-section.

We now turn to θ -dependent simulations of Mz in
underdoped YBa2Cu3O6+x for several different Fermi surface
topology scenarios. Recent quantum oscillation measurements
on YBa2Cu3O6.54 [14, 15] (detected over a wide interval
in magnetic field B ≈ μ0 H ) provide estimates for the
relevant parameters. With the exception of the weak 637 T
frequency [14], the full waveform from [14] can be reproduced
in figure 3 by numerical integration of equation (5) and
the adjustment of only four parameters1 (listed in the figure
caption).

We begin by considering scenarios in which the F ∼
500 T frequency corresponds to an electron pocket cylinder,
for which a single value of k‖ is expected at each azimuthal
angle φ. Several different proposals for the groundstate of
YBa2Cu3O6+x predict electron pockets that are approximately
circular in cross-section and situated near k = (π, 0) in
figure 1(a). These include Q = (π, π) spin- or d-density
wave ordering [4, 10], certain types of spin stripe ordering in
which Q = (π[1 ± 2δ], π) where δ = 1

8 [7] and helical or
spiral ordering [4, 10]. Strong-coupling treatments in which
the hopping of quasiparticles is frustrated by antiferromagnetic

1 The ability of equation (5) to reproduce the waveform with only
four parameters suggests that a uniform � (which is proportional to the
quasiparticle scattering rate [18]) provides an adequate approximation, but that
a n = 2 component of corrugation must be taken into consideration. The
ability of equation (5) to reproduce the experimental magnetization implies
that there is no Berry phase. The sign of τ (which results from a vector product
in the experiment) is assumed to be negative in order to correctly account for
the inferred sign of Mz from [19].

Figure 3. Simulation of the magnetization (or magnetic torque
τ ∝ −Mz B) from [14] using equation (5) and four adjustable
parameters F0 = (h̄/2πe)A0 ≈ 513 T, �F = (h̄/2πe)A1 ≈ 40 T
and �F2 = (h̄/2πe)A2 ≈ −10 T in equation (1) and � = 170 T in
equation (6). These values yield Fneck ≈ 463 T and Fbelly ≈ 543 T.
We have assumed the phase to be a fixed quantity in equation (5)
(see footnote 1). We have also assumed T = 1 K, m∗/me = 1.7 and
g = 0 to be fixed quantities, although inaccuracies in T or m∗ are
easily compensated by an adjustment of � and thus have little affect
on the waveform.

correlations can also predict circular electron pockets under
certain conditions [11], although in this case they are situated
at k = (π, π). In all these cases, a circular electron
pocket implies that k‖ ≈ kF for all φ, in which case nodes
corresponding to m = 1 and 0 should be observed at θ1 ≈ 40◦
and θ0 ≈ 55◦ when B = 40 T at all values of φ (as shown
in figure 4(a)). Figure 5(a) shows the calculated θ -dependent
magnetization (using the same parameters as in figure 3).
Nodes at θ1 and θ0 are clearly evident in the simulation
made using equation (8) in which the second harmonic of
the corrugation A2 is neglected (black curve), and remain
discernible and at the same positions in the simulation made
using equation (5) in which A2 is included (green curve).

Under certain conditions, the electron cross-sectional area
can deviate from an ideal circular form. In δ = 1

8 stripe models
that incorporate both spin and charge ordering (e.g. figures 3(c)
and (d) from [7]), for example, the cross-section is expected
to become elongated along kx . In figure 4(b) this situation
is approximated by an ellipsoidal pocket with η = 2 and
ζ = 0. The reduced symmetry of the pocket is reflected in the
φ-dependence of the angular sweeps in figures 5(a) and (b).
For φ = 90◦ (in which, since ζ = 0, the axis of rotation
corresponds to the major axis) θ1 and θ0 are pushed out to very
high angles in figure 5(b), becoming practically unobservable
for the simulation made using equation (5) in which A2 is
included. For φ = 0, by contrast, θ1 and θ0 are reduced to small
angles in figures 4(b) and 5(c). If the unreconstructed Fermi
surface is more circular in form [10], spiral or d-density wave
order can give rise to trapezoidal-shaped electron pocket cross-
sections, as shown in figure 4(c) (using Q = (π[1 + 2δ], π)

where δ = 0.1). In spite of the loss of rotational symmetry,
the φ-dependent k‖ is similar to that of an ellipse, but with its
major axis along ky . Since the φ dependences of θ1 and θ2 are
rotated by 90◦ with respect to figure 4(b), their measurement
can by used to distinguish stripe and spiral or d-density wave
scenarios, or perhaps other scenarios [20].
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Figure 4. Polar plots (cyan) of k‖ versus φ (left-hand-side) for
different cylinder cross-sections (black), together with polar plots of
θ1 (blue) and θ0 (red) versus φ (right-hand-side). The estimates of θ1

and θ0 are made at B = 40 T, corresponding to �F/B = 1 in
equation (9) and figure 2. Polar plot (a) corresponds to a simple
circular corrugated cylinder cross-section for which k‖ = kF,
(b) corresponds an elliptical electron pocket with an ellipticity of
η = 2 and orientation ζ = 0 predicted in 1

8 th stripe models that
combine spin and charge ordering, while (c) corresponds to an
electron pocket of unusual cross-section predicted by certain
d-density wave or spiral ordering models. (d) corresponds to highly
elliptic hole pockets (η = 3.5) for which two different orientations
ζ ≈ ±45◦ within the kx , ky plane are expected, giving rise to two
different values of k‖ for each value of φ.

Turning now to the case where the F ∼ 500 T frequency
originates from hole pockets [1, 9, 12], the φ-dependences
of k‖, θ1 and θ0 in figure 4(d) and the forms of the θ -
dependent curves in figures 5(d)–(f) become very different
from those of electron pockets. In the hole pocket simulations
we have assumed η = 3.5, which is approximately what
might be expected were the Fermi surface obtained in recent
angle-resolved photoemission experiments [9] folded about the
(π, 0) − (0, π) line. Since there are two different orientations
ζ ≈ ±45◦ to be counted in figure 4(d) and equation (5), two
different values of k‖ give rise to four simultaneously beating
frequencies, leading to more complicated θ -dependent curves
in figures 5(d)–(f). On the other hand, the θ -dependent curves
exhibit a distinctive fourfold symmetry that changes rapidly
with φ owing to the highly elliptical cross-sections of the

Figure 5. Examples of θ-dependent simulations at B = 40 T made
using equation (5) using the parameters listed in figure 3 caption
(green curves) and using equation (7) in which A2 is neglected (black
curves) for several different scenarios depicted in figure 4. Curve (a)
is the expected θ-dependence for a simple circular cross-section,
while (b) and (c) are the expected curves obtained on rotating about
the major and minor axes (respectively) of the elliptical pocket with
η = 2 shown in figure 4(b). (d)–(f) are examples of the
θ-dependence expected for the highly elliptical hole pockets in
figure 4(d) in which there are two different values of k‖ for each
value of φ (with the exception of φ = 0◦ or 90◦ (d) where they
become degenerate). The red and blue vertical lines point to the
locations of θ0 and θ1 respectively.

pockets. For most arbitrary values of φ (e.g. figure 5(e)), the
contribution from two very different values of k‖ make the
nodes somewhat difficult to locate. Distinct nodes do appear,
however, at φ = 0 and 90◦ in figure 5(d) when the two values
of k‖ become degenerate, or near φ ≈ ±15◦ and ±75◦ in
figure 5(f) due to a serendipitous degeneracy of θ1 and θ0.
For this reason, rather detailed φ-dependent measurements are
required to pin down the precise geometry of the cross-section
of hole pockets.

In summary, we have shown that nodes in the quantum
oscillation amplitude detected in dual axis rotation experiments
can be used to infer the cross-sectional shape of corrugated
Fermi surface cylinders in underdoped YBa2Cu3O6+x , which
can help to answer the question as to whether the prominent
∼500 T frequency originates from electron- or hole-like
carriers, as well as providing essential clues for the groundstate
description. An advantage of this proposed method over
AMRO experiments [16, 17] is that the shape of the cross-

4
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section is linked directly to the pocket responsible for the
quantum oscillations (which needs always to be assumed in
AMRO experimenta). A further advantage is that the predicted
nodes occur at small values of θ where Hc2 is lower, thereby
proving less of an obstacle for Fermi surface measurements.

There are, however, potential caveats. In the present
simulations we have assumed that the corrugation of the Fermi
cylinders is caused by simple interlayer hopping terms tc,n .
More complicated forms of warping that vary with kx and
ky may lead to some degree of variation from the present
simulations. A kz-dependent damping factor, meanwhile (for
which there is presently no evidence (see footnote 1)), will
diminish the presence of nodes, while Zeeman splitting effects
(presently neglected by setting g = 0 [15]) will lead to
additional nodes unrelated to the corrugation. Nodes due to
Zeeman splitting (often called ‘spin splitting zeroes’) typically
depend only on θ , in contrast to those caused by corrugation
described here, which depend on B , φ and θ .

This work is conducted under the auspices of the US
Department of Energy, the State of Florida and the US National
Science Foundation.
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